skip to main content


Search for: All records

Creators/Authors contains: "Choi, Jiwon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 18, 2024
  2. null (Ed.)
    The ability to autonomously modify their environment dramatically increases the capability of robots to operate in unstructured environments. We develop a specialized construction algorithm and robotic system that can autonomously build motion support structures with previously unseen objects. The approach is based on our prior work on adaptive ramp building algorithms, but it eliminates the assumption of having specialized building materials that simplify manipulation and planning for stability. Utilizing irregularly shaped stones makes the problem significantly more challenging since the outcome of individual placements is sensitive to details of contact geometry and friction, which are difficult to observe. To reuse the same high-level algorithm, we develop a new physics-based planner that explicitly considers the uncertainty produced by incomplete in-situ sensing and imprecision during pickup and placement. We demonstrate the approach on a robotic system that uses a newly developed gripper to reliably pick up stones with minimal additional sensors or complex grasp planning. The resulting system can build structures with more than 70 stones, which in turn provide traversable paths to previously inaccessible locations. 
    more » « less
  3. Abstract Dry stacking with found, minimally processed rocks is a useful capability when it comes to autonomous construction. However, it is a difficult planning problem since both the state and action space are continuous, and structural stability is strongly affected by complex friction and contact constraints. We propose an algorithmic approach for autonomous construction from a collection of irregularly shaped objects. The structure planning is calculated in simulation by first considering geometric and physical constraints to find a small set of feasible actions and then refined by using a hierarchical filter based on heuristics. These plans are then executed open-loop with a robotic arm equipped with a wrist RGB-D camera. Experimental results show that the proposed planning algorithm can significantly improve the state of the art robotics dry-stacking techniques. 
    more » « less